
LW Technology

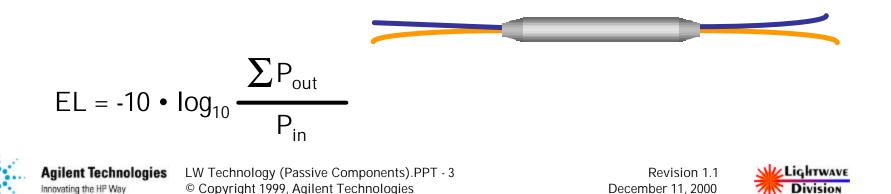
Passive Components

Innovating the HP Way

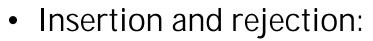
Agilent Technologies LW Technology (Passive Components). PPT - 1 © Copyright 1999, Agilent Technologies

Patchcords

- "Jumper cables" to connect devices and instruments
- "Adapter cables" to connect interfaces using different connector styles
- Insertion loss is dominated by the connector losses (2 m fiber has almost no attenuation)
- Often yellow sheath used for single-mode fiber, orange sheath for multimode


Agilent Technologies

LW Technology (Passive Components).PPT - 2 © Copyright 1999, Agilent Technologies


Wavelength-Independent Couplers

- Wavelength-Independent coupler (WIC) types:
 - couple light from each fiber to all the fibers at the other side
 - 50% / 50% (3 dB) most common 4 port type
 - 1%, 5% or 10% taps (often 3 port devices)
- Excess Loss (EL):
 - Measure of power "wasted" in the component

Wavelength-Dependent Couplers

- Wavelength-division multiplexers (WDM) types:
 - 3 port devices (4th port terminated)
 - 1310 / 1550 nm ("classic" WDM technology)
 - 1480 / 1550 nm and 980 / 1550 nm for pumping optical amplifiers (see later)
 - 1550 / 1625 nm for network monitoring

- Low loss (< 1 dB) for path wavelength
- High loss (20 to 50 dB) for other wavelength

Common

Isolators

- Main application:
 - To protect lasers and optical amplifiers from light coming back (which otherwise can cause instabilities)
- Insertion loss:

- Low loss (0.2 to 2 dB) in forward direction
- High loss in reverse direction: 20 to 40 dB single stage, 40 to 80 dB dual stage)
- Return loss:
 - More than 60 dB without connectors

Agilent Technologies LW Technology (Passive Components).PPT - 5 © Copyright 1999, Agilent Technologies

Filter Characteristics

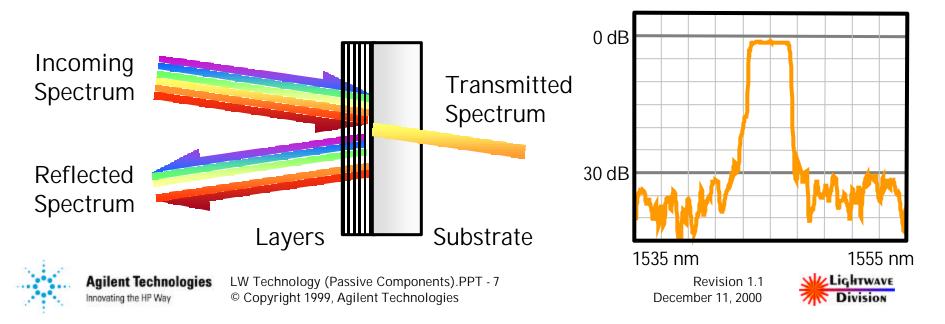
l _{i-1}

- Passband
 - Insertion loss
 - Ripple
 - Wavelengths
 (peak, center, edges)
 - Bandwidths
 (0.5 dB, 3 dB, ..)
 - Polarization dependence
- Stopband
 - Crosstalk rejection
 - Bandwidths
 (20 dB, 40 dB, ..)

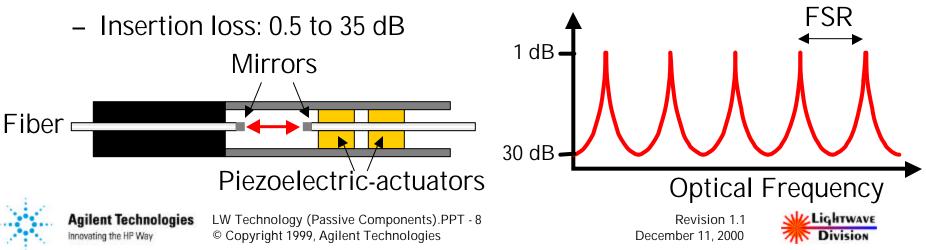
Crosstalk Passband Crosstalk

1,

Agilent TechnologiesLW Technology (Passive Components).PPT - 6Innovating the HP Way© Copyright 1999, Agilent Technologies


Revision 1.1 December 11, 2000

l _{i+1}


Dielectric Filters

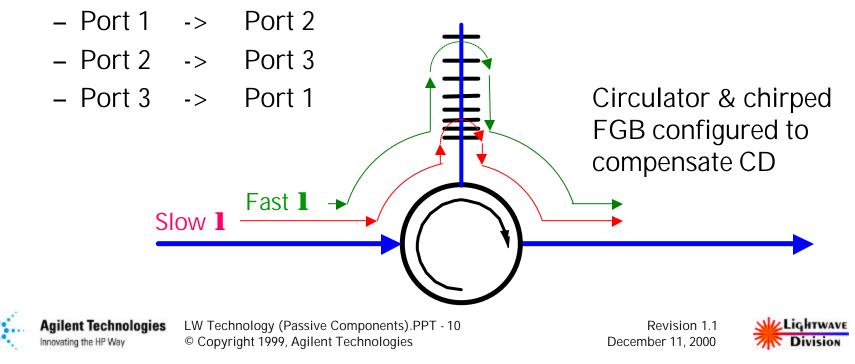
- Thin-film cavities
 - Alternating dielectric thin-film layers with different refractive index
 - Multiple reflections cause constructive & destructive interference
 - Variety of filter shapes and bandwidths (0.1 to 10 nm)
 - Insertion loss 0.2 to 2 dB, stopband rejection 30 to 50 dB

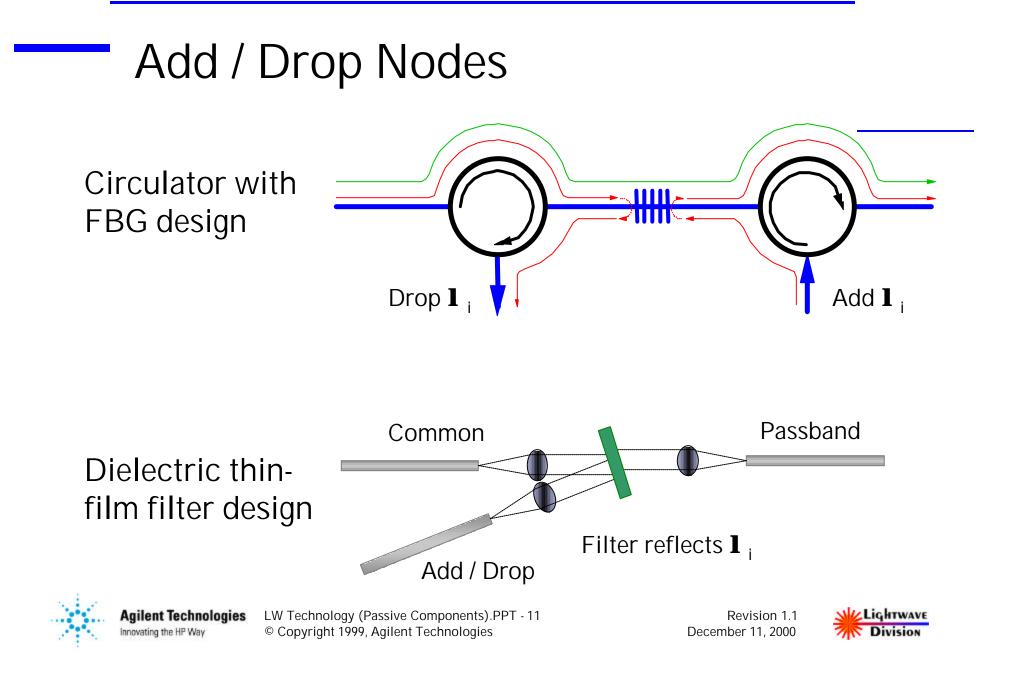
Tunable Fabry-Perot Filters

- Filter shape
 - Repetitive passband with Lorentzian shape
 - Free Spectral Range FSR = c / 2 n I (I: cavity length)
 - Finesss F = FSR / BW (BW: 3 dB bandwidth)
- Typical specifications for 1550 nm applications
 - FSR: 4 THz to 10 THz, F: 100 to 200, BW: 20 to 100 GHz

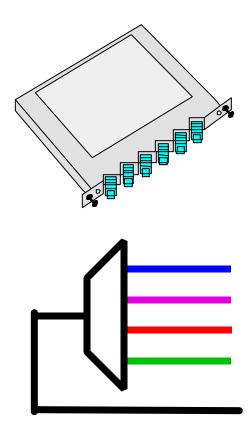
Fiber Bragg Gratings (FBG)

- Single-mode fiber with "modulated" refractive index
 - Refractive index changed using high power UV radiation
- Regular interval pattern: reflective at *one* wavelength
 - Notch filter, add / drop multiplexer (see later)
- Increasing intervals: "chirped" FBG
 - Compensation for chromatic dispersion



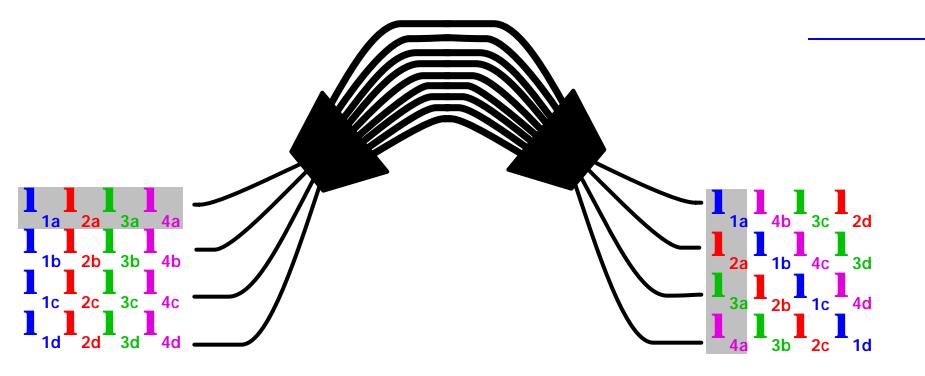

gilent Technologies LW Technology (Passive Components).PPT - 9 © Copyright 1999, Agilent Technologies

Circulators


- Optical crystal technology similar to isolators
 - Insertion loss 0.3 to 1.5 dB, isolation 20 to 40 dB
- Typical configuration: 3 port device

Multiplexers (MUX) / Demultiplexers (DEMUX)

- Key component of wavelength-division multiplexing technology (DWDM)
- Variety of technologies
 - Cascaded dielectric filters
 - Cascaded FBGs
 - Phased arrays (see later)
- High crosstalk suppression essential for demultiplexing



Agilent TechnologiesLW Technology (Passive Components).PPT - 12Innovating the HP Way© Copyright 1999, Agilent Technologies

Array Waveguide Grating (AWG)

Rows ..

.. translate into ..

.. columns

If only one input is used: wavelength demultiplexer!

Agilent TechnologiesLW Technology (Passive Components).PPT - 13Innovating the HP Way© Copyright 1999, Agilent Technologies

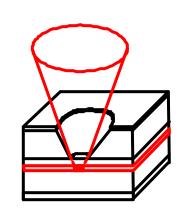
Review Questions

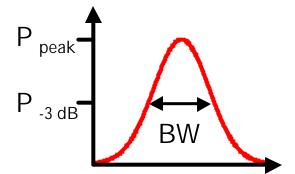
1. What is the difference between a WIC and a WDM?

2. What are the losses of a 10% tap?

3. What does a demultiplexer do?

Agilent Technologies LW Technology (Passive Components).PPT - 14 © Copyright 1999, Agilent Technologies


Innovating the HP Way

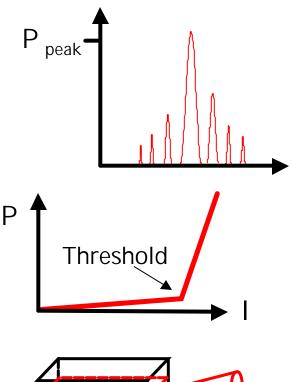

Agilent Technologies LW Technology (Passive Components).PPT - 15 © Copyright 1999, Agilent Technologies

Light-emitting Diode (LED)

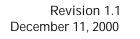
- Datacom through air & multimode fiber
 - Very inexpensive (laptops, airplanes, lans)
- Key characteristics
 - Most common for 780, 850, 1300 nm
 - Total power up to a few μW
 - Spectral width 30 to 100 nm
 - Coherence length 0.01 to 0.1 mm
 - Little or not polarized
 - Large NA (\rightarrow poor coupling into fiber)

novating the HP Wa

LW Technology (Passive Components).PPT - 16 gilent Technologies © Copyright 1999, Agilent Technologies

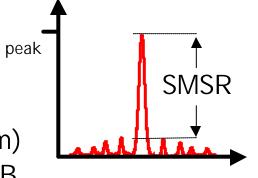

Fabry-Perot (FP) Laser

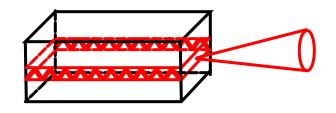
- Multiple longitudinal mode (MLM) spectrum
- "Classic" semiconductor laser
 - First fiberoptic links (850 or 1300 nm)
 - Today: short & medium range links
- Key characteristics
 - Most common for 850 or 1310 nm
 - Total power up to a few mw
 - Spectral width 3 to 20 nm
 - Mode spacing 0.7 to 2 nm
 - Highly polarized
 - Coherence length 1 to 100 mm
 - Small NA (\rightarrow good coupling into fiber)



Agilent Technologies LW nnovating the HP Way © C

LW Technology (Passive Components).PPT - 17 © Copyright 1999, Agilent Technologies



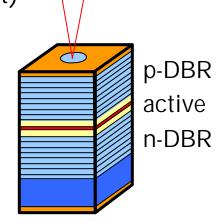


Distributed Feedback (DFB) Laser

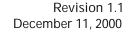
- Single longitudinal mode (SLM) spectrum
- High performance telecommunication laser •
 - Most expensive (difficult to manufacture)
 - Long-haul links & DWDM systems
- Key characteristics
 - Mostly around 1550 nm
 - Total power 3 to 50 mw
 - Spectral width 10 to 100 MHz (0.08 to 0.8 pm)
 - Sidemode suppression ratio (SMSR): > 50 dB
 - Coherence length 1 to 100 m
 - Small NA (\rightarrow good coupling into fiber)

novating the HP Wa

LW Technology (Passive Components).PPT - 18 gilent Technologies © Copyright 1999, Agilent Technologies


Revision 1.1 December 11, 2000

Ρ


Vertical Cavity Surface Emitting Lasers (VCSEL)

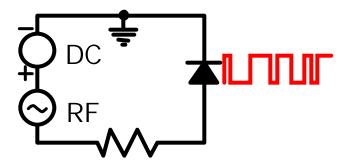
- Distributed Bragg Reflector (DBR) Mirrors
 - Alternating layers of semiconductor material
 - 40 to 60 layers, each λ / 4 thick
 - Beam matches optical acceptance needs of fibers more closely
- Key properties
 - Wavelength range 780 to 980 nm (gigabit ethernet)
 - Spectral width: <1nm
 - Total power: >-10 dBm
 - Coherence length:10 cm to10 m
 - Numerical aperture: 0.2 to 0.3

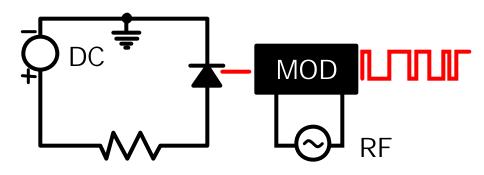
novating the HP Wa

Other Light Sources

- White light source
 - Specialized tungsten light bulb
 - Wavelength range 900 to 1700 nm,
 - Power density 0.1 to 0.4 nw/nm (SM), 10 to 25 nw/nm (MM)
- Amplified spontaneous emission (ASE) source
 - "Noise" of an optical amplifier without input signal
 - Wavelength range 1525 to 1570 nm
 - Power density 10 to 100 µw/nm
- External cavity laser
 - Most common for 1550 nm band (some for 1310 nm)
 - Tunable over more than 100 nm, power up to 10 mw
 - Spectrum similar to DFB laser, bandwidth 10 kHz to 1 MHz

Basic Transmitter Design


- Optimized for one particular bit rate & wavelength
- Often temperature stabilized laser
- Internal (direct) or external modulation
- Digital modulation •
 - Extinction ratio: 9 to 15 dB
 - Forward error correction
 - Scrambling of bits to reduce long sequences of 1s or 0s (reduced DC and low frequency spectral content)
- Analog modulation
 - Modulation index typically 2 to 4%
 - Laser bias optimized for maximum linearity

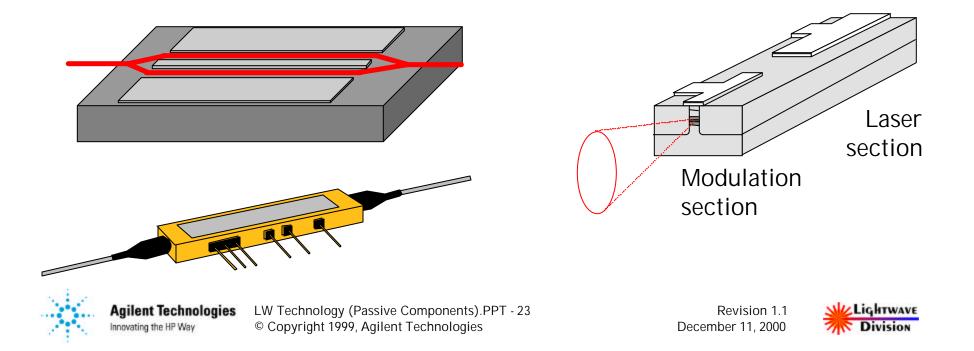


Modulation Principles

- Direct (laser current)
 - Inexpensive
 - Can cause chirp up to 1 nm (wavelength variation caused by variation in electron densities in the lasing area)

- External
 - 2.5 to 40 gb/s
 - AM sidebands (caused by modulation spectrum) dominate linewidth of optical signal

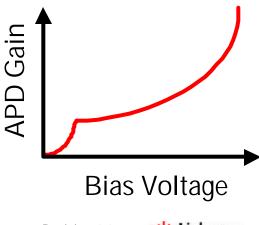
Agilent Technologies


LW Technology (Passive Components).PPT - 22 © Copyright 1999, Agilent Technologies

External Modulators

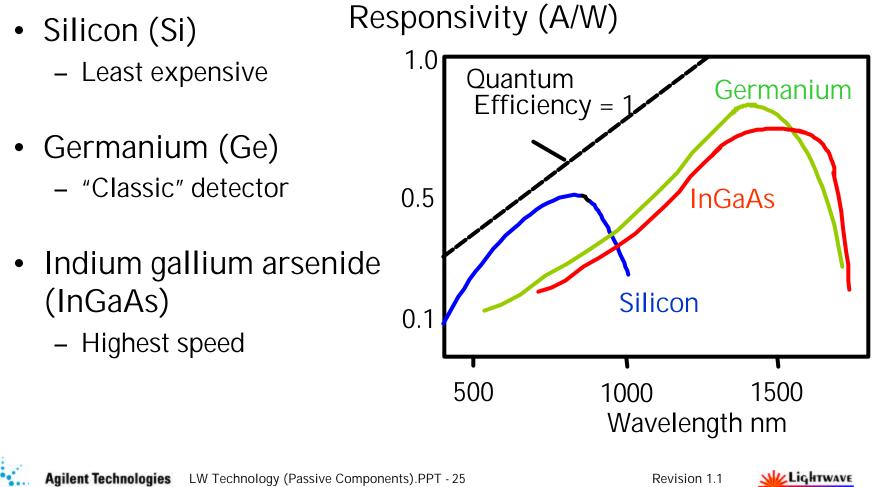
Mach-Zehnder Principle

DFB laser with external on-chip modulator



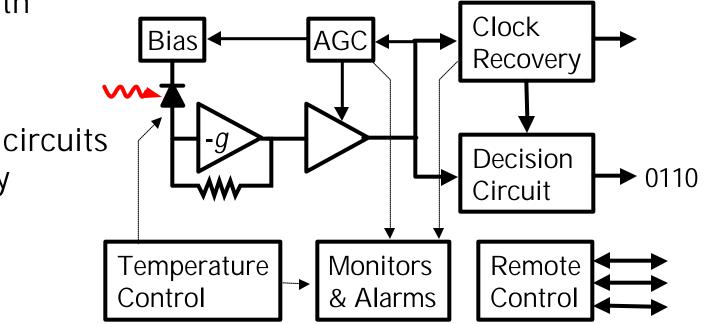
Photodiodes

- PIN (p-layer, intrinsic layer, n-layer)
 - Highly linear, low dark current
- Avalanche photo diode (APD)
 - Gain up to x100 lifts detected optical signal above electrical noise of receiver
 - Best for high speed and highly sensitive receivers
 - Strong temperature dependence
- Main characteristics
 - Quantum efficiency (electrons/photon)
 - Dark current
 - Responsivity (current vs. L)


Agilent Techn Innovating the HP War

Agilent Technologies LW Technology (Passive Components).PPT - 24 © Copyright 1999, Agilent Technologies

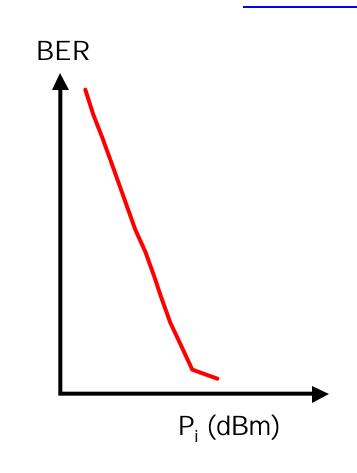
© Copyright 1999, Agilent Technologies


Innovating the HP Way

December 11, 2000

Basic Receiver Design

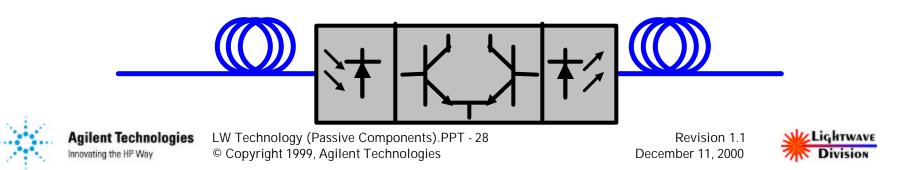
- Optimized for *one particular*
 - Sensitivity range
 - Wavelength
 - Bit rate
- Can include circuits for telemetry



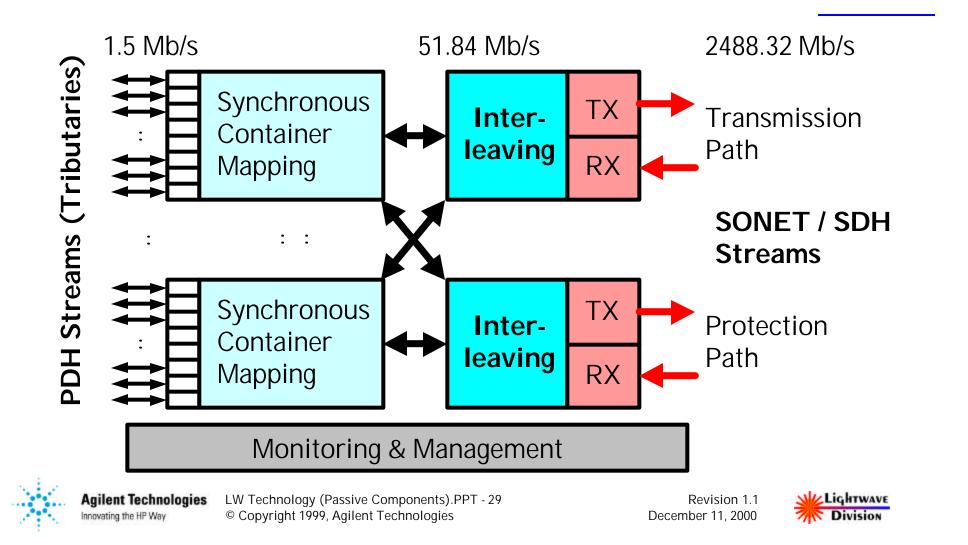
Agilent Technologies LW Technology (Passive Components).PPT - 26 © Copyright 1999, Agilent Technologies

Receiver Sensitivity

- Bit error ratio (BER) versus input power (p_i)
 - Minimum input power depends on acceptable bit error rate
 - Power margins important to tolerate imperfections of link (dispersion, noise from optical amplifiers, etc.)
 - Theoretical curve well understood
 - Many receivers designed for 1E-12 or better BFR


novating the HP Wa

gilent Technologies LW Technology (Passive Components).PPT - 27 © Copyright 1999, Agilent Technologies



- Receiver followed by a transmitter
 - No add or drop of traffic
 - Designed for *one* bit rate & wavelength
- Signal regeneration
 - Reshaping & timing of data stream
 - Inserted every 30 to 80 km before optical amplifiers became commercially available
 - Today: reshaping necessary after about 600 km (at 2.5 Gb/s), often done by SONET/SDH add/drop multiplexers or digital cross-connects

Conceptual Terminal Diagram

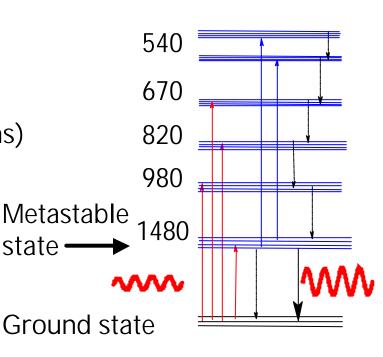
Review Questions

- 1. What are the differences between an LED, FP, and DFB lasers?
- 2. Which photodiode do you use for
 - Data communication?
 - Speed longhaul traffic?
- 3. How do you define receiver sensitivity?

gilent Technologies LW Technology (Passive Components).PPT - 30 © Copyright 1999, Agilent Technologies

LW Technology

Optical Amplifiers


Innovating the HP Way

Agilent Technologies LW Technology (Passive Components).PPT - 31 © Copyright 1999, Agilent Technologies

Erbium Properties

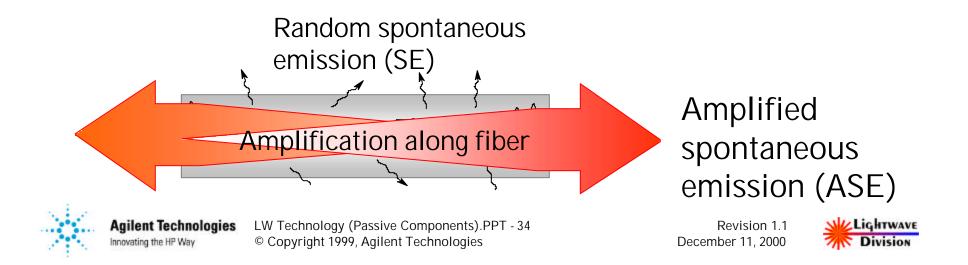
- Erbium: rare element with phosphorescent properties
 - Photons at 1480 or 980 nm activate electrons into a metastable state
 - Electrons falling back emit light in the 1550 nm range
- Spontaneous emission
 - Occurs randomly (time constant ~1 ms)
- Stimulated emission
 - By electromagnetic wave
 - Emitted wavelength & phase are identical to incident one

novating the HP Wa

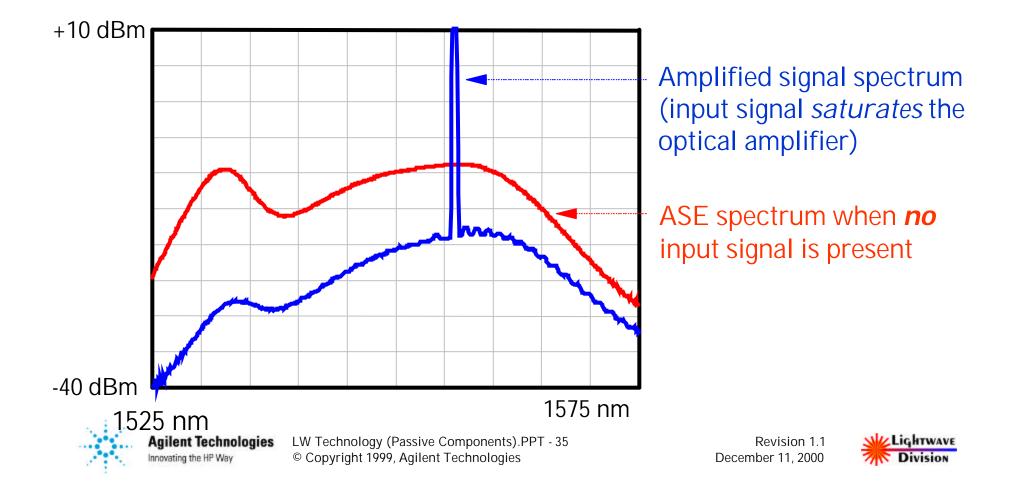
LW Technology (Passive Components).PPT - 32 gilent Technologies © Copyright 1999, Agilent Technologies

Basic EDF Amplifier Design

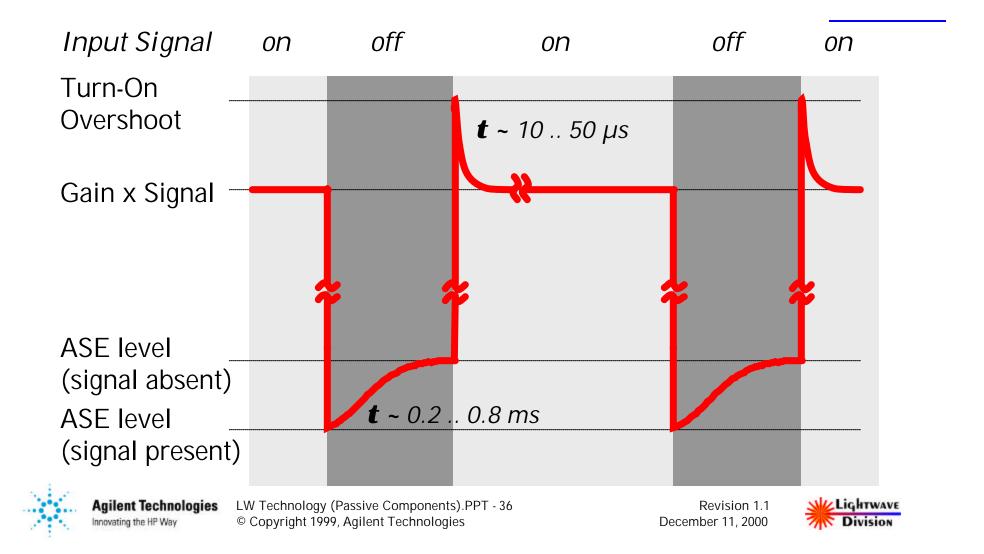
- Erbium-doped fiber amplifier (EDFA) most common
 - Commercially available since the early 1990's
 - Works best in the range 1530 to 1565 nm
 - Gain up to 30 dB (1000 photons out per photon in!)
- Optically transparent
 - "Unlimited" RF bandwidth
 - Wavelength transparent



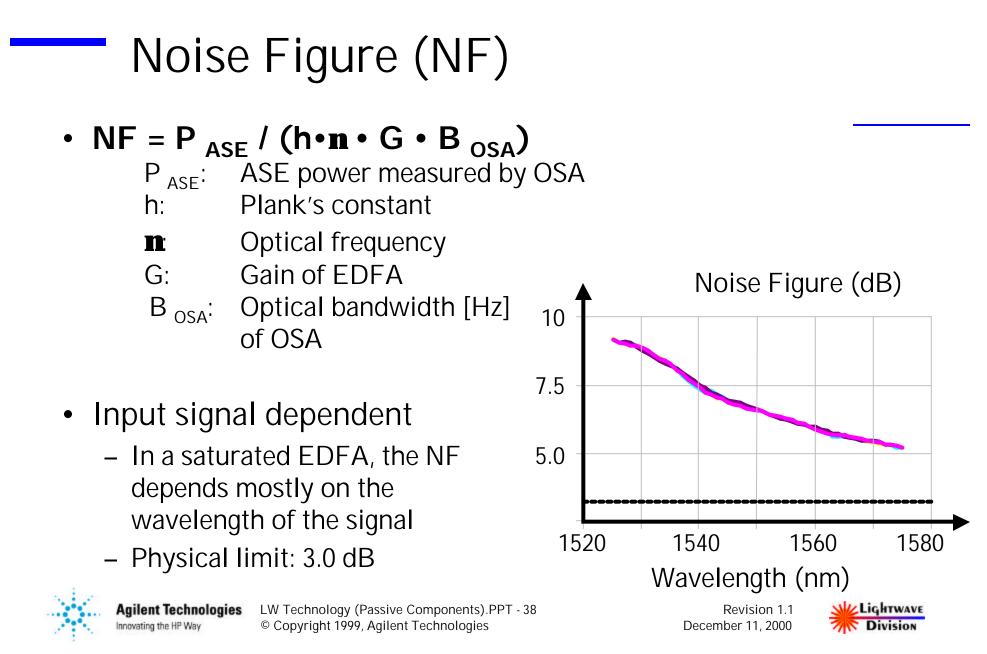
Agilent TechnologiesLW Technology (Passive Components).PPT - 33Inovating the HP Way© Copyright 1999, Agilent Technologies



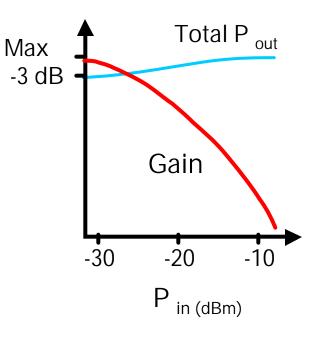
Amplified Spontaneous Emission


- Erbium randomly emits photons between 1520 and 1570 nm
 - Spontaneous emission (SE) is not polarized or coherent
 - Like any photon, SE stimulates emission of other photons
 - With no input signal, eventually all optical energy is consumed into amplified spontaneous emission
 - Input signal(s) consume metastable electrons \rightarrow much less ASE

Output Spectra



Time-Domain Properties


Optical Gain (G)

- G = S _{Output} / S _{Input}
 S _{Output}: output signal (without noise from amplifier)
 S _{Input}: input signal
- Gain (dB) Input signal dependent 40 - Operating point (saturation) of P Input: -30 dBm EDFA strongly depends on 30 power and wavelength of -20 dBm incoming signal -10 dBm 20 -5 dBm 10 1540 1560 1580 1520 Wavelength (nm) Lightwave LW Technology (Passive Components).PPT - 37 Agilent Technologies Revision 1.1 nnovating the HP Wa © Copyright 1999, Agilent Technologies December 11, 2000 Division

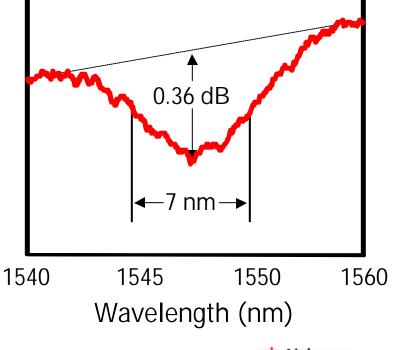
Gain Compression

- Total output power: Amplified signal + ASE
 - EDFA is in saturation if almost all Erbium ions are consumed for amplification
 - Total output power remains almost constant
 - Lowest noise figure
- Preferred operating point
 - Power levels in link stabilize automatically

nnovating the HP Wa

LW Technology (Passive Components).PPT - 39 Agilent Technologies © Copyright 1999, Agilent Technologies

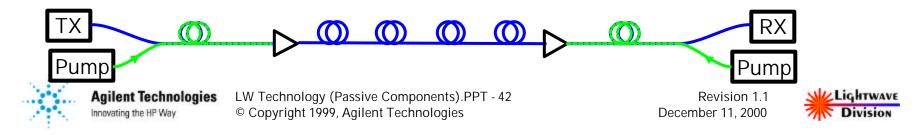
Polarization Hole Burning (PHB)


- Polarization Dependent Gain (PDG)
 - Gain of small signal polarized orthogonal to saturating signal 0.05 to 0.3 dB greater than the large signal gain
 - Effect independent of the state of polarization of the large signal
 - PDG recovery time constant relatively slow
- ASE power accumulation
 - ASE power is minimally polarized
 - ASE perpendicular to signal experiences higher gain
 - PHB effects can be reduced effectively by quickly scrambling the state of polarization (SOP) of the input signal

Spectral Hole Burning (SHB)

- Gain depression around saturating signal
 - Strong signals reduce average ion population
 - Hole width 3 to 10 nm
 - Hole depth 0.1 to 0.4 dB
 - 1530 nm region more sensitive to SHB than 1550 nm region
- Implications
 - Usually not an issue in transmission systems (single λ or DWDM)
 - Can affect accuracy of some lightwave measurements

☀


Agilent Technologies LW Technolog novating the HP Way © Copyright 19


LW Technology (Passive Components).PPT - 41 © Copyright 1999, Agilent Technologies

EDFA Categories

- In-line amplifiers
 - Installed every 30 to 70 km along a link
 - Good noise figure, medium output power
- Power boosters
 - Up to +17 dBm power, amplifies transmitter output
 - Also used in cable TV systems before a star coupler
- Pre-amplifiers
 - Low noise amplifier in front of receiver
- Remotely pumped
 - Electronic free extending links up to 200 km and more (often found in submarine applications)

Security Features

- Input power monitor
 - Turning on the input signal can cause high output power spikes that can damage the amplifier or following systems
 - Control electronics turn the pump laser(s) down if the input signal stays below a given threshold for more than about 2 to 20 μs
- Backreflection monitor
 - Open connector at the output can be a laser safety hazard
 - Straight connectors typically reflect 4% of the light back
 - Backreflection monitor shuts the amplifier down if backreflected light exceeds certain limits

Other Amplifier Types

- Semiconductor Optical Amplifier (SOA)
 - Basically a laser chip without any mirrors
 - Metastable state has nanoseconds lifetime (-> nonlinearity and crosstalk problems)
 - Potential for switches and wavelength converters
- Praseodymium-doped Fiber Amplifier (PDFA)
 - Similar to EDFAs but 1310 nm optical window
 - Deployed in CATV (limited situations)
 - Not cost efficient for 1310 telecomm applications
 - Fluoride based fiber needed (water soluble)
 - Much less efficient (1 W pump @ 1017 nm for 50 mW output)

Security Features

- Input power monitor
 - Turning on the input signal can cause high output power spikes that can damage the amplifier or following systems
 - Control electronics turn the pump laser(s) down if the input signal stays below a given threshold for more than about 2 to 20 µs
- Backreflection monitor
 - Open connector at the output can be a laser safety hazard
 - Straight connectors typically reflect 4% of the light back
 - Backreflection monitor shuts the amplifier down if backreflected light exceeds certain limits

Other Amplifier Types

- Semiconductor Optical Amplifier (SOA)
 - Basically a laser chip without any mirrors
 - Metastable state has nanoseconds lifetime (-> nonlinearity and crosstalk problems)
 - Potential for switches and wavelength converters
- Praseodymium-doped Fiber Amplifier (PDFA)
 - Similar to EDFAs but 1310 nm optical window
 - Deployed in CATV (limited situations)
 - Not cost efficient for 1310 telecomm applications
 - Fluoride based fiber needed (water soluble)
 - Much less efficient (1 W pump @ 1017 nm for 50 mW output)

Future Developments

- Broadened gain spectrum
 - 2 EDFs with different co-dopants (phosphor, aluminum)
 - Can cover 1525 to 1610 nm
- Gain flattening
 - Erbium Fluoride designs (flatter gain profile)
 - Incorporation of Fiber Bragg Gratings (passive compensation)
- Increased complexity
 - Active add/drop, monitoring and other functions

Review Questions

1. What components do you need to build an EDFA?

2. What is ASE?

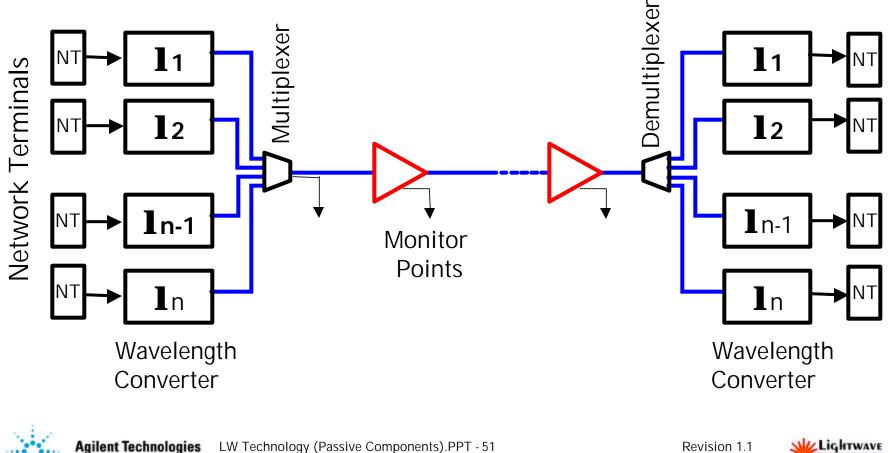
3. How do you saturate an amplifier?

Agilent Technologies LV nnovating the HP Way ©

LW Technology (Passive Components).PPT - 49
 © Copyright 1999, Agilent Technologies

LW Technology

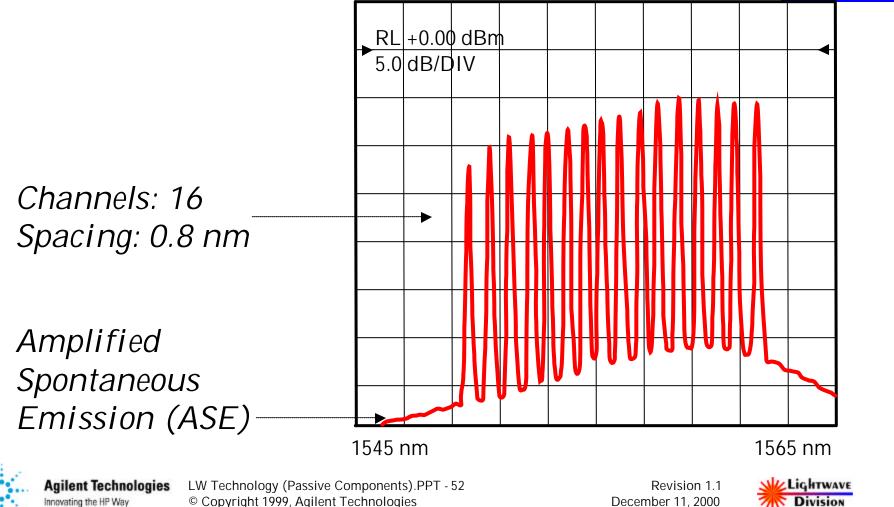
Wavelength-Division Multiplexing



Innovating the HP Way

Agilent Technologies LW Technology (Passive Components).PPT - 50 © Copyright 1999, Agilent Technologies

Basic Design (Dense Wavelength-Division Multiplexing)



Innovating the HP Way

LW Technology (Passive Components).PPT - 5 © Copyright 1999, Agilent Technologies

DWDM Spectrum

© Copyright 1999, Agilent Technologies

WDM Standards

- ITU-T draft Rec. G.mcs: "Optical Interfaces for Multichannel Systems with Optical Amplifiers"
 - Wavelength range 1532 to 1563 nm
 - 100 GHz (0.8 nm) channel spacing, 50 GHz proposed
 - 193.1 THz (1552.51 nm) reference
- ITU-T draft Rec. G.onp: "Physical Layer Aspects of Optical Networks"
 - General and functional requirements

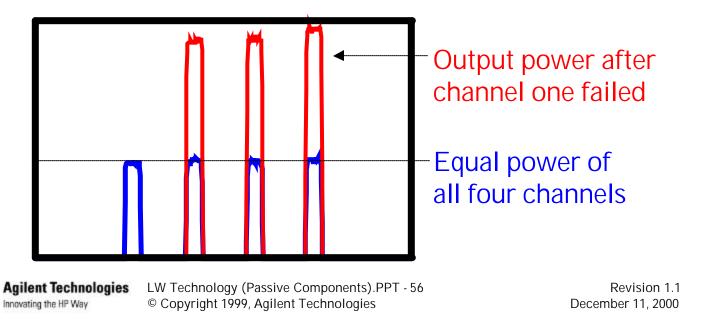
EDFAs In DWDM Systems

Optical amplifiers in DWDM systems require special considerations because of:

- Gain flatness (gain tilt) requirements
- Gain competition
- Nonlinear effects in fibers

gilent Technologies LW Technology (Passive Components).PPT - 54 © Copyright 1999, Agilent Technologies

Gain Flatness (Gain Tilt)


- Gain versus wavelength
 - The gain of optical amplifiers depends on wavelength
 - Signal-to-noise ratios can degrade below acceptable levels (long links with cascaded amplifiers)
- Compensation techniques
 - Signal pre-emphasis
 - Gain flattening filters
 - Additional doping of amplifier with Fluorides

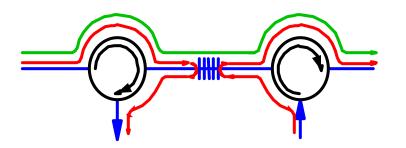
Gain Competition

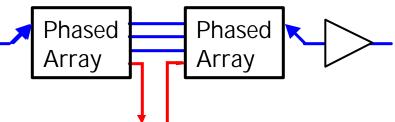
- *Total* output power of a standard EDFA remains almost constant even if input power fluctuates significantly
- If one channel fails (or is added) then the remaining ones increase (or decrease) their output power

Output Power Limitations

- High power densities in SM fiber can cause
 - Stimulated Brillouin scattering (SBS)
 - Stimulated Raman scattering (SRS)
 - Four wave mixing (FWM)
 - Self-phase and cross-phase modulation (SPM, CPM)
- Most designs limit total output power to +17 dBm
 - Available channel power: 50/N mW (N = number of channels)

DWDM Trends


- Higher capacity
 - 120 channels for access network applications
 - 50 GHz channel spacing (25 GHz under investigation)
 - Wavelength range extended up to 1625 nm
- All optical network
 - Modulation & protocol transparency
 - Optical add/drop multiplexers
 - Optical cross-connects
 - Optical switch fabrics
 - Wavelength conversion



Add / Drop Points

- Fixed configurations
 - Simple and inexpensive
 - Inflexible

- Flexible configurations
 - Selective wavelength add/drop

- Future designs more sophisticated
 - High capacity & performance

LW Technology (Passive Components).PPT - 59

Research Topics

- Optical cross-connects
 - Technology for large optical switches
- Network and traffic management •
 - Digital versus optical routing
 - Traffic amount & network size
 - Virtual networks (private networks over public paths)
- Wavelength conversion
 - Wavelengths must be reused in large networks for optimal use of available capacity
 - Eventually has to include optical pulse regeneration (re-shaping, re-timing)

Review Questions

- 1. What technologies enable the use of DWDM?
- 2. What are the advantages of DWDM?
- 3. What are the disadvantages of DWDM?

Agilent Technologies

LW Technology (Passive Components).PPT - 61
 © Copyright 1999, Agilent Technologies

